已知实数a、b、c满足(1/a+b)×(1/a+c)+1/4(b-c)²=0
则代数式ab+ac的值是
展开得
1/a²+(b+c)/a+bc+(b-c)²/4=0,
1/a²+(b+c)/a+(b+c)²/4=0,
同时乘以a²去分母得,
1+a(b+c)+a²(b+c)²/4=0,
设ab+ac=a(b+c)=x
则1+x+x²/4=0,
x²+4x+4=0
(x+2)²=0
x=-2
即ab+ac=-2
热门标签:
则代数式ab+ac的值是
展开得
1/a²+(b+c)/a+bc+(b-c)²/4=0,
1/a²+(b+c)/a+(b+c)²/4=0,
同时乘以a²去分母得,
1+a(b+c)+a²(b+c)²/4=0,
设ab+ac=a(b+c)=x
则1+x+x²/4=0,
x²+4x+4=0
(x+2)²=0
x=-2
即ab+ac=-2