如何用求原函数的方法求∫√(r²-x²)dx=πr²/2,积分范围[-r,r]
∫【-r,r】√(r²-x²)dx
=2∫【0,r】√(r²-x²)dx【x=rsinθ】
=2∫【0,π/2】√(r²-r²sin²θ)drsinθ
=2r²∫【0,π/2】cos²θdθ
=r²∫【0,π/2】[1+cos(2θ)]dθ
=r²[θ+(1/2)sin(2θ)]【上限π/2,下限0】
=r²(π/2-0)+r²(0-0)
=(π/2)r²
x=rsina
再做就简单了
热门标签:
∫【-r,r】√(r²-x²)dx
=2∫【0,r】√(r²-x²)dx【x=rsinθ】
=2∫【0,π/2】√(r²-r²sin²θ)drsinθ
=2r²∫【0,π/2】cos²θdθ
=r²∫【0,π/2】[1+cos(2θ)]dθ
=r²[θ+(1/2)sin(2θ)]【上限π/2,下限0】
=r²(π/2-0)+r²(0-0)
=(π/2)r²
x=rsina
再做就简单了